본문 바로가기

센서2

예측분석에 기반한 글로벌 공급망 관리를 위한 SingleStore 사물 인터넷(IoT)은 매일 엄청난 양의 데이터를 생성합니다. 이 데이터에 대한 실시간 분석은 오늘날의 상시 경제에서 소비자의 요구를 해결하는 데 도움이 됩니다. ​ 공급망 관리는 IoT가 제조 산업에 미치는 영향을 보여줍니다. 차량, 선적 컨테이너 , 패키지 등 다수의 이동 부품이 데이터 소스로 기능하고 있는 가운데, 기업은 IoT 데이터를 수집하고 분석하기 위한 보다 발전된 방법이 필요합니다. ​ ​ 대부분의 기업은 묘사 분석(Descriptive Analysis)을 사용하지만, Gartner의 위 통계는 묘사 만으로는 더 이상 충분하지 않다고 강조합니다. 데이터 분석은 예측 분석(Predictive Analysis)으로 발전하고 있으며, 결국 이를 훨씬 넘어 처방 분석(Prescriptive Ana.. 2019. 9. 3.
IOT(FDC)등의 초당 수억건의 시계열 데이터 적재 및 처리 성능 극대화 서론 산업 현장의 생산성 향상을 위해 인공지능, ML, IoT(Internet of Things) 등 다양한 기술이 융합된 자율화된 공장을 통해 위해 설비의 고장이나 이상을 예측하고 생산성 향상을 위해 스마트 팩토리 도입 추진이 가속되고 있습니다. 하지만 반도체와 같은 제조 현장에서 비정상적 이벤트 감지를 통해 수율증대, 예지 정비 등의 생산 효율성과 안전성 등을 높이기 위한 ML/딥러닝 모델 적용을 하는데 있어 생산 현장에서 발생되는 센서 데이터의 양이 폭발적으로 증가하고 있어 이를 실시간으로 모델에 제공하고 이를 분석하는데 많은 기업들이 한계에 봉착하여 많은 고민과 다양한 시도를 하고 있는 것이 현실입니다. 이에 SingleStore를 통해 실시간으로 데이터를 적재하고 적재된 데이터를 실시간으로 분석.. 2019. 8. 6.